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Stability Issues of Low-Energy
Intense Beams
K.Y. Ng and A.V. Burov

Fermi National Accelerator Laboratory,1 P.O. Box 500, Batavia, IL 60510

Abstract. Some stability issues of low-energy intense beams are discussed. These
include inductor tuners for the cancellation of the longitudinal space-charge induced
potential-well distortion and their consequences, transient beamloading and possible
feed-forward alleviation, coherent and incoherent transverse tune shifts, as well as the
impact of transverse space charge on transverse mode-coupling instability.

I INTRODUCTION

Several relatively low-energy and very high-intensity proton rings, such as the
storage rings of the U.S. and European neutron spallation sources, the booster of
the Japan Hadron Project, and the low-energy ring of the Fermilab future booster,
are under design [1–4]. These rings have circumferences around 150 to 200 m, con-
taining ∼ 1 × 1014 protons per cycle. High intensity and low energy imply large
space-charge forces in the longitudinal and transverse directions. The longitudinal
space-charge force will counteract significantly the rf focusing force giving rise to
a large potential-well distortion. To cope with this distortion, one method is to
insert inductor tuners to cancel the longitudinal space-charge force. This insertion
together with its consequences will be discussed. The intense charge density will
also impact large transient beamloading onto the rf cavities. A feed-forward scheme
to alleviate the beamloading voltage is addressed. Transversely, the importance of
the coherent and incoherent space-charge tune shifts for an intense low-energy beam
is reviewed. Finally, the effect of space charge on transverse mode-coupling insta-
bility is investigated.

II LONGITUDINAL SPACE CHARGE

Let us take, for example, an older design of the low-energy ring in the Fermilab
future booster, which accelerates 2 bunches each containing Nb = 5.0×1013 protons
from kinetic energy 1.0 GeV to 4.5 GeV at 15 Hz. The ring has a circumference of
180.649 m, rf harmonic h = 2, and transition gamma γt = 7. The 95% bunch area
is A = 1.0 eV-s and 95% normalized emittance ε95 = 200× 10−6 πm. The average
current in the ring is Iav = 23.27 A and the peak current is Ipk = Iav/B = 93.06 A,
where B = 0.25 is the bucket bunching factor. Assuming parabolic distribution, the
half bunch length is τ̂ = 3eNb/(4Ipk) = 64.56 ns. The half momentum spread is

therefore δ̂ = A/(πτ̂) = 3.322 × 10−3. The average betatron function and average
dispersion of the ring are, respectively, 〈β〉 = 25 m and 〈D〉 = 1.8 m. Thus, the

average beam radius is about a = [ε95〈β〉/(γβ) + (〈D〉δ̂)2]1/2 = 5.29 cm. A beam

1) Operated by the Universities Research Association, Inc., under contract with the U.S. Depart-
ment of Energy.
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pipe of radius b ∼ 8 cm will be recommended. We can therefore estimate the
longitudinal space-charge impedance of the ring [5]:

Z‖0
n
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spch

= −j Z0

2γ2β

(
1 + 2 ln

b
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)
= 92.11 Ω , (2.1)

where γ = 2.0658 and β = 0.8750 are the Lorentz factors at injection while Z0 ≈
377 Ω is the free-space impedance. This is not bad for microwave instability, because
the operation is below transition and the Keil-Schnell stability limit is∣∣∣∣∣∣Z

‖
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where E0 is the total energy of the synchronous particle and F‖ = 1.047 is the form
factor for a bunch with parabolic momentum distribution.

A Potential-Well Distortion and Inductor Insertion

Ignoring coupling impedances, for a bunch with the half length and half mo-
mentum spread specified above, the rf bucket holding the bunch must have a syn-
chrotron tune νs and a rf voltage Vrf ,

νs =
|η|δ̂
ω0τ̂

= 1.207× 10−3 , Vrf cosφs =
2πβ2E0ν2

s

|η|h = 31.73 kV , (2.3)

where ω0/(2π) = 1.452 MHz is the revolution frequency and φs is the synchronous
angle. Therefore, a particle with time advance τ ahead the synchronous particle
will see the relative rf voltage

Vrf [sin(φs − hω0τ )− sinφs] ≈ −Vrf cosφs

[
3πB

2

]
τ

τ̂
= −37.38

τ

τ̂
kV , (2.4)

where the rf sine wave has been linearized. However, the intense beam creates on
the particle a strong repulsive longitudinal electric field

Espch
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4πγ2β2c
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a

]
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, (2.5)

where c is the velocity of light. Assuming the linear parabolic bunch distribution
λ(τ ) = 3eNb/(4τ̂ )(1− τ 2/τ̂ 2), the space-charge voltage seen per turn is

Vspch = Espch
z C =
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(ω0τ̂)2
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kV , (2.6)

where C is the circumference of the accelerator ring. As a result, to maintain the
bunch shape, such as the length and momentum spread, the rf voltage required
must be increased to Vrf = (37.38 + 29.11)31.73/37.38 = 56.43 kV.

If we do not want such a large rf voltage brought about by the space-charge force,
we need to cancel the space charge by, for example, inductor insertion. Two such
experiments have been performed lately.
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1. Fermilab-Los Alamos Collaboration

In 1997, the Los Alamos PSR was running at 797 MeV with an intensity of
3× 1013 protons in the beam. The space-charge force was intense and an rf voltage
of 10 kV was required to bunch the beam so that the injection-extraction gap could
be kept clean. Two ferrite tuners designed to cancel 2

3
of the space charge were built,

each∼ 76 cm long consisting of 30 Toshiba M4C21A cores (12.7 cm I.D., 20.3 cm
O.D., and 2.54 cm thick). The relative magnetic permeability is µ = 50 to 70 over
a modest temperature range. These properties remain approximately constant up
to 30 MHz, after which µ rolls off. A solenoid was wound outside so that relative
magnetic permeability could be decreased through perpendicular biasing.

The experiment was performed in August of 1997 [6]. First, bunch lengthening
was observed when the ferrite was biased (Fig. 1 left) as was expected with the de-
crease of the inductance. Second, the rf voltage required for bunching was reduced
by about 1

3
, indicating that the space-charge force had been cancelled partially by

the inductance of the ferrite (Fig. 1 right). Third, the injection-extraction gap
during the experiment was probably the cleanest ever observed.

FIGURE 1. Left: PSR beam bunch shapes with unbiased (solid) and biased (dashes) ferrite
compensation. Right: Stability threshold versus rf bunching voltage. Results of this experiment
are depicted by triangles. (Reproduced from Ref. 6).

2. KEK experiment

A similar experiment started at the KEK PS Main Ring in 1997, but with a much
lower intensity of 2 to 9×1011 protons per bunch [7]. The beam kinetic energy was

500 MeV with a space-charge impedance Z‖0/n = −j310 Ω. Instead of ferrite, a
Met-Glass-like material called Finemet was used. The inductor tuner consisted of
12 Finemet cores (14.0 cm I.D., 34.0 cm O.D., and 2.54 cm thick), without current
biasing. The control of the relative permeability was achieved by installing copper
short bars across the Finemet cavities. The coherent frequency of the quadrupole
synchrotron oscillation was measured as a function of bunch intensity. As shown
in Fig. 2, with the inductor tuner on, the coherent frequency was less dependent
on intensity, indicating that the space-charge force had been partially cancelled.
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FIGURE 2. Left: Measured frequency shifts of the quadrupole oscillations versus beam intensity
at KEK with and without Finemet. Right: New KEK results of quadrupole oscillation frequency
versus beam intensity with Finemet tuners on, 1
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on, and off. (Reproduced from Ref. 7).

B Power Loss to Ferrite or Finemet

To incorporate loss, the relative permeability can be made complex: µ→ µ′−jµ′′.
The impedance of the ferrite is therefore

Z
‖
0

n
= j(µ′ − jµ′′)ω0L , (2.7)

where L denotes the inductance of the ferrite or Finemet required to compensate
for the space charge of the bunch. It is clear that µ′ and µ′′ must be frequency-
dependent. Their general behaviors are shown in the left plot of Fig. 3. For the
Toshiba M4C21A ferrite, µ′ is roughly constant at µ′L ∼ 50 at low frequencies and
starts to roll off around ωr/(2π) ∼ 30 MHz, while µ′′, being nearly zero at low
frequencies, reaches a maximum µ′′R near ωr/(2π). For the Finemet this roll-off
frequency can be at very much lower frequency, around 1 to 10 MHz. Thus the
power loss to the inductor tuners from the beam may become very large and may
not be ignored. First, the energy lost by the beam has to be compensated by the rf

system. Second, the ferrite or Finemet can become too warm. Third, a large ReZ‖0
of the inductor can lead to microwave instability. In fact, such an instability had
been already observed in the 1997 Los Alamos experiment, and this instability has
been much more serious at the present moment when the PSR beam intensity has
been upgraded to ∼ 5.0× 1013 protons as indicated in right plot of Fig. 3.

Essentially, the loss is the overlap integral of the bunch spectrum and ReZ‖0 of
the inductor tuners. To compute this, an impedance model for the inductor tuners
is necessary. The simplest 2-parameter model consists of an ideal inductance L and
an ideal resistor R in parallel, which gives

Z
‖
0 (ω)=jωL

1− jω/ωr
1 + ω2/ω2

r

∝ jω(µ′ − jµ′′) , ωr=
R

L
. (2.8)
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The corresponding longitudinal wake potential is W (t) =R [ δ(t)−ωre−ωrt ] . A 3-
parameter model is the broadband parallel-RLC resonance:

Z
‖
0 (ω) =

R

1 + jQ
(
ω

ωr
− ωr
ω

) , (2.9)

where ωr is roughly where µ′′ peaks. The other two parameters R and Q can be
obtained in terms of µ′L, the value of µ′ at low frequencies, and µ′′R, the value of µ′′

at resonant frequency ωr/(2π). From Eq. (2.7), we obtain∣∣∣∣∣∣Z
‖
0

n

∣∣∣∣∣∣
ind

= µ′Lω0L and ReZ‖0(ωr) = µ′′RωrL , (2.10)

where |Z‖0/n|ind is the inductor impedance per harmonic. From Eq (2.9), we obtain∣∣∣∣∣∣Z
‖
0

n
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ind

=
ω0R

Qωr
and ReZ‖0 (ωr) = R . (2.11)

Thus, we can solve for µ′′R = Qµ′L. Note that Q here is the quality factor describing
the µ′′ peak. It relates the values of µ′ and µ′′ at different frequencies, and is not
the usual industrial-quoted Q which relates them at the same frequency.

The energy the particle lost to the inductor in one passage can now be computed:

E =
3e2Nbτ

2ω0τ̂ 3

∣∣∣∣∣Z‖n
∣∣∣∣∣
ind

+
3e2Nb

2Qω0ωr τ̂ 3

∣∣∣∣∣Z‖n
∣∣∣∣∣
ind

, (2.12)

where a parabolic bunch distribution has been used and Qωrτ̂ � 1 has been as-
sumed. The first term is the linear force from the inductive impedance Z‖/n|ind =
jω0L, which is supposed to cancel the space-charge force, leaving behind the second

FIGURE 3. Left: A typical plot of µ′ and µ′′ as functions of frequency. Right: Longitudinal
microwave instability observed in a chopped coasting beam (for 2 turns) at the Los Alamos
PSR. The collective frequency of the instability is around 75 MHz. Because of the increase
in momentum spread, some protons will be rotated into the injection-extraction gap through
synchrotron oscillations. They trap electrons leading to transverse e-p instability.



6

term, which is the actual energy lost to the insertion. For the RL model under the
same assumption, exactly the same result is obtained if we make the substitution
Q = 1. Thus for nb bunches the total power lost to the insertion becomes

P =
3e2nbN2

b

4πQωrτ̂ 3

∣∣∣∣∣Z‖n
∣∣∣∣∣
ind

. (2.13)

Numerical evaluations in various rings are listed in Table 1, where a full compen-
sation by ferrite or Finemet and Q = 1 in the resonance model of Eq. (2.9) are
assumed. Although the energy lost by a particle per turn is in general small, the
total power lost to the ferrite can become big when the bunch is short and intense.
For example, in the new design of the Fermilab future booster, the loss of 361 kW
to the ferrite is large, although it is tolerable with water cooling. However, for
some future machines with, for example, bunch length shortened by another factor
of 10, this power loss will increase by a factor of 1000, and will certainly become
intolerable.

TABLE 1. Energy loss per turn and total power loss to ferrite or Finemet at various
rings.

KEK PSR Fermilab Future Booster
Old design New design

Nb 2− 9× 1011 3.0− 5.0× 1013 5.0× 1013 2.5× 1013

nb 1 1 2 4
τ̂ (ns) 44 100 64.56 28.25
Z
‖
0 /n|spch (Ω) 310 200 100 100

Ferrite: fr = 30 MHz
E (keV) 0.221−0.992 0.183−0.344 2.60 13.6
P (kW) 0.0047−0.096 2.45−6.82 60.4 361
Finemet: fr = 5 MHz
E (keV) 1.32−5.95 1.10−1.83 15.6 81.4
P (kW) 0.0028−0.058 14.7−40.9 362 2160

C Perpendicular Bias to Saturation

The loss to the ferrite is mainly hysteresis effect. In the hysteresis B-H plot on
the left side of Fig. 4, the loss due to one complete oscillation of the ac magnetic
field H1 produced by the beam is proportional to the enclosed area marked 1. If
the ferrite is biased with a dc magnetic field H at Point 2, the hysteresis area will
be smaller and so is the loss. If we bias at Point 3 at saturation, there will not
be any hysteresis loop due to the ac magnetic field H1 and therefore all hysteresis
loss will be eliminated. This strong dc bias field Hc will leave the magnetization ~M
precessing around it, and the only loss will be due to the spin wave inside the ferrite,
which is small. The price we need to pay here is a much lower relative permeability,
which is equal to the slope the line joining the origin to Point 3. Thus more ferrite
cores will be needed to compensate for the same amount of space charge. Such a
bias scheme can be achieved by encircling the ferrite rings with a solenoid, where
the dc biasing field Hc is along the beam direction and is perpendicular to the ac
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field H1 carried by the beam. In fact, such a solenoid is always needed so that
the relative permeability can be suppressed as the space charge decreases while the
beam particles are ramped. A schematic picture of the precessing magnetization is
shown in the right plot of Fig. 4.

Without the hysteresis loss, there will not be any broadband loss peak. There is
still a resonance at the much higher gyromagnetic circular frequency of ωc = γgHc,
where γg = 2π × 2.80 MHz/Oersted is the gyromagnetic ratio. By choosing the
suitable biasing field Hc, this resonant frequency can be made at least 10 times
higher than ωr where the broadband loss peaks but is absent now in the presence
of the saturated biasing. This resonance peak is very much narrower and the
quality factor is Q <∼ 10. Thus, we can see from Eq. (2.13) that the power loss can
be reduced by at least a factor of ∼ 100.
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FIGURE 4. Left: Hysteresis B-H plot. At zero bias, the loss is proportional to the enclosed
area marked 1. With dc bias field at Point 2, the hysteresis loss will be smaller. At saturated bias
at Point 3, all hysteresis loss will be eliminated. Right: System with saturated perpendicular bias
Hc in the z-direction. With the application of the ac field ~H1 in the y-direction, the magnetization
~M acquires an ac component in the x-y plane precessing about the z-axis.

D Microwave Instability

Actual area of beam stability in the complex Z
‖
0 -plane (or the traditional U ′-V ′

plane) is somewhat different from the commonly quoted Keil-Schnell estimation. In
Fig. 5, the heart-shape solid curve, denoted by 1, is the threshold curve for parabolic
distribution in momentum spread, where the momentum gradient is discontinuous
at the ends of the spread. Instability develops and a smooth momentum gradient
will result at the ends of the spread, changing the threshold curve to that of a
distribution represented by 2, for example, 15

16
(1− δ2/δ̂2). Further smoothing of the

momentum gradient at the ends of the spread to a Gaussian distribution will change
the threshold curve to 3. On the other hand, the commonly known Keil-Schnell
threshold is denoted by the circle of unit radius in dots. This is the reason why in
many low-energy machines the Keil-Schnell limit has been significantly overcome
by a factor of about 5 to 10. In this case, the space charge is almost the only
source of the impedance, the real part of the impedance can be typically orders



8

FIGURE 5. Microwave instability threshold curves in the complex Z‖0 (or U ′-V ′) plane, for (1)
parabolic momentum distribution, (2) distribution with a continuous momentum gradient, and
(3) Gaussian momentum distribution. The commonly quoted Keil-Schnell threshold criterion is
denoted by the circle in dots. An intense space-charge beam has impedance denoted by Point A
outside the Keil-Schnell circle. A ferrite tuner compensating the space charge completely will
have a resistive impedance roughly at Point B and is therefore unstable.

of magnitude smaller. As an example, if the impedance of the Los Alamos PSR
is at Point A, the beam is within the microwave stable region if the momentum
spread is Gaussian like, although it exceeds the Keil-Schnell limit. Now, if we
compensate the space-charge potential-well distortion by the ferrite inductance,
the ferrite required will have an inductive impedance at low frequency equal to
the negative value of the space charge impedance at A, for example, about −5.5
units according to Fig. 5. However, the ferrite also has a resistive impedance or

ReZ‖0 . Although ReZ‖0/n is negligible at low frequencies, it reaches a peak value
near ωr/(2π) (about 50 to 80 MHz for the Toshiba M4C21A) with the peak value

the same order of magnitude as the low-frequency ImZ‖0 . Actually, according to
the RLC model discussed above, we get

ReZ‖0/n|pk

ImZ
‖
0/n|ω→0

≈ Q2 +Q+ 1

Q+ 2
=


Q if Q� 1
1 if Q ∼ 1
1
2

if Q� 1

 ≥ 1

2
. (2.14)

The RL model gives the same impedance ratio of 1
2

as the low-Q case of Eq.(2.14).
Thus the ferrite will contribute a resistive impedance denoted roughly by Point B
(∼ 5.5 units) when Q ∼ 1 or at least one half of it when Q� 1. This resistive
impedance of the ferrite will certainly exceed the threshold curve and we believe
that the longitudinal instability observed at the Los Alamos PSR is a result of
this consideration. It follows from here that such low-frequency compensation of
an intense space-charge induced potential-well distortion will definitely result in
the microwave instability at high frequencies, ω ' ωr. In other words, the strong
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space-charge potential-well distortion can only be compensated by the ferrite or
Finemet inductance to a small extent to ensure that the resistive part of the ferrite
or Finemet is kept below the microwave instability threshold.

For the transverse bias of the ferrite to saturation discussed in the previous
section, although the power dissipation in the ferrite can be reduced to a large
extent, the sharp gyromagnetic resonance resulting at higher frequency can become
more susceptible to microwave instability, unless the gyromagnetic resonance is very
much narrower the width of the bunch spectrum.

E Transient Beamloading

The intense proton beam will excite modes of oscillation in the rf cavities when
passing through them. This is called transient beamloading. For the new design
of the Fermilab low-energy booster ring, a total rf voltage of ∼ 185 kV is required.
Since the rf frequency is low, about 7.5 MHz, one needs to split the rf system
into 10 cavities, each with Vrf = 18.5 kV. Each cavity is loaded with 30 cm of
ferrite cores (µ′ = 21) with inner/outer radii 20/35 cm. This gives an inductance
of L ∼ 0.61 µH and capacitance C ∼ 820 µF. Then for a point bunch containing
Nb = 2.5× 1013 protons, the transient beam loading voltage is

Vt0 =
eNb

C
= 5.4 kV , (2.15)

which is an appreciable fraction of the Vrf = 18.5 kV supplied by the klystron. For
a longer bunch, the transient beamloading will be less. In fact, this is just the wake
potential seen by a particle at time τ ahead the bunch center due to the wake of a
cavity gap, or for a Gaussian bunch,

Vt(τ )=e
∫ ∞
τ
dτ ′λ(τ ′)W (τ ′−τ )=− eNbωrR‖

2Q cosφ0
Re ejφ0−τ2/(2σ2

τ )w

[
στωrejφ0

√
2
− jτ√

2στ

]
,

(2.16)

where ωr/(2π) is the resonant frequency, R‖ the shunt impedance, and Q the quality
factor of the cavity mode excited, φ0 = sin−1 1

2Q
, and w is the complex error

function. It is easy to show that as the bunch length στ → 0, Vt(τ ) approaches the
point-bunch limit Vt0 in Eq. (2.15).

Let us understand how the transient beamloading originates. As a bunch of
protons passes through the cavity gap, a negative charge equal to that carried by
the bunch will be left by the image current at the upstream end of the cavity gap.
Since the negative image current will resume from the downstream end of the cavity
gap following the bunch, an equal amount of positive charge will accumulate there.
Thus, a voltage will be created at the gap opposing the beam current and this is
the transient beamloading voltage as illustrated in Fig. 6 left. Griffin [8] suggested
to use a feed-forward system, which will monitor the linear charge distribution of
the bunch and deliver via a tetrode the same amount of negative charge density to
the downstream end of the cavity gap so as to cancel the positive charge there and
thus alleviating the transient beamloading, as illustrated in Fig. 6 right.
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FIGURE 6. Left: As a positively charged bunch passes through a cavity, the image current
leaves a negative charge at the upstream end of the cavity gap. As the image current resumes
at the downstream side of the cavity, a positive charge is created at the downstream end of the
gap because of charge conservation, thus setting up an electric field ~E and therefore the transient
beamloading voltage. Right: The bunch density is monitored and a negative charge density is
fed-forward through a tetrode to the downstream side of the cavity gap to cancel the positive
charge left there, thus eliminating the transient beamloading.

III TRANSVERSE SPACE-CHARGE EFFECTS

A Coherent and Incoherent Tune Shifts

Usually, people say that a large incoherent space-charge tune spread will en-
compass a lot of parametric resonances and lead to instability. The common rule
of thumb is that incoherent self-field tune spread should not exceed ∼ 0.40. Both
rings of the future Fermilab booster are designed to have normalized 95% emittances
equal to 2.0×10−4 πm, so that such tune spreads can be below 0.40. However, this
self-field tune spread at injection has never been a well-measured beam parameter.
It is difficult to measure because low-energy rings are usually ramped very rapidly.

Machida and Ikegami [9] pointed out at the space-charge workshop at Shelter
Island that it is the coherent rather than the incoherent tune shifts that determine
the instability of a beam. In fact, this is quite reasonable. When the bunch is oscil-
lating at an integer coherent tune, we have the usual integer resonance. This leads
to an instability because all particles are performing betatron oscillations with a
tune component that is at an integer. The whole beam will become unstable. On
the other hand, if the incoherent tune spread covers an integer resonance, only a
small amount of particles are hitting the integer resonance; thus the whole beam
may not be unstable. The coherent betatron tune is not affected by space charge
when the image forces are small. This is because the centroid of the bunch does not
see any space-charge force. On the other hand, the coherent quadrupole betatron
tune and coherent sextupole betatron tune will be affected by space charge. There-
fore, when they hit a resonance, there will be instability. This is demonstrated by
the simulation of Machida and Ikegami in Fig. 7. In the simulation, the horizontal
coherent quadrupole tune hits the integer of 13 when the beam intensity reaches
∼ 15 A. We do see that the horizontal emittance increases rapidly around the beam
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intensity of 15 A. The vertical coherent quadrupole tune hits the integer 11 when
the beam intensity is raised to around 13 to 15 A. The vertical emittance increases
also around those intensities. However, we do not see any growth of emittance
when the coherent quadrupole tunes cross half integers.

FIGURE 7. Tune of coherent quadrupole mode (left) and rms emittance at 512 turns after
injection (center and right) versus beam intensity. Upper figures show horizontal results and
lower ones vertical. Rms emittance growth is observed when either the horizontal or vertical
coherent quadrupole tune becomes integer. (Reproduced from Ref. 9).

B Space Charge and TMCI

It was reported in a recent paper of Blaskiewicz [10] that the space-charge tune
shift can strongly damp the transverse mode coupling instability (TMCI), which
is also known as strong head-tail instability. The investigation was made on the
basis of particle tracking and the analytically solvable square-well air-bag model
[11], with the bunch distribution in the longitudinal phase space,

Ψ(φ,∆E) = 1
2
ρ(φ)[δ(∆E − ∆̂E) + δ(∆E + ∆̂E)] , (3.1)

where ρ(φ) = 1/(2π) is the linear distribution or the projection onto the longitudi-

nal axis. In this model the synchrotron phase φ ranges from −π to 0 at ∆E = −∆̂E
and from π to 0 at ∆E = ∆̂E, with φ = 0 representing the head of the bunch.

What is going to be presented here is a qualitative explanation why the space
charge helps TMCI. Without space charge, the bunch starts to be unstable when
two neighboring synchro-betatron modes merge under the influence of the wake
forces. Typically, the pure betatron mode (the azimuthal or synchrotron harmonic
0 mode, also known as the rigid-bunch mode) is affected by the wake force and
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shifts downward, while the other azimuthal modes are not much affected, at least
at low intensity. The transverse wake force produced by an off-axis beam has the
polarity that deflects the beam further away from the pipe axis. This force acts
as a defocusing force for the rigid beam mode, and therefore the frequency shifts
downward. Such a down-shift of the betatron frequency is routinely observed in
electron rings and serves as an important tool of probing the impedance. As a result,
the instability threshold is determined by the coupling of the 0 and −1 modes, as
illustrated in the left plot of Fig. 8, (see below for definitions of parameters).

The space charge by itself also shifts all the frequencies downward, as illustrated
in the right plot of Fig. 8. The only exception is the azimuthal 0 mode, which
describes the motion of the bunch as a whole, and, therefore, is not influenced by
the space charge at all. Thus, in the presence of space charge, the 0 mode will
couple with the −1 mode at a higher current intensity and therefore the threshold
is raised in the presence of space charge. This is illustrated in the left plot of Fig. 9.

Let us go in more details with mathematics. The transverse displacement x(φ)
of a particle at the synchrotron phase φ satisfies the equation of motion:

d2x(φ)

dt2
+ ω2

βx(φ) = F (φ) + Sρ(φ)[x(φ)− x̄(φ)] , (3.2)

where ωβ/(2π) is the unperturbed betatron frequency and the smooth approxima-
tion for the betatron oscillations has been applied. To incorporate synchrotron
oscillation, the full time derivative takes the form

d

dt
=

∂

∂t
+ ωs

∂

∂φ
, (3.3)

with ωs/(2π) being the synchrotron frequency. The right-hand side of Eq. (3.2)
contains the transverse driving forces. The first term is the transverse wake force

FIGURE 8. Left: The transverse wake force shifts mostly the azimuthal 0 mode downward but
not the other modes. Instability occurs when the 0 and −1 modes meet with each other. Right:
The space-charge force in the absence of the wake forces shifts all modes downward with the
exception of the 0 mode.
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F (φ) =
Nbe2c2

E0C

∫ |φ|
0

W1[z(φ′)− z(φ)]ρ(φ′)x̄(φ′)dφ′ , (3.4)

where Nb is the number of particles in the bunch, W1 the transverse wake func-
tion, z(φ) the longitudinal position of the beam particle. The second term is the
space-charge contribution. It is proportional to the linear density ρ(φ) and the
displacement relatively the local beam center x(φ) − x̄(φ), with the constant S
representing the space-charge strength.

To solve the problem quantitatively, we expand the offset into the synchrotron
harmonics (or azimuthals):

x(φ, t) = e−iωβt−iΩt
∞∑

n=−∞
xne

inφ , (3.5)

where Ω/(2π) is the collective frequency shift. In this air-bag model, all particles
reside at the edge of the bunch distribution in the longitudinal phase space. Note
that because of the square-well air-bag model, these synchrotron azimuthals are
slightly different from the conventional ones. The average offset at the synchrotron
phase φ is therefore given by

x̄(φ, t) = 1
2

[x(φ, t) + x(−φ, t)] = e−iωβt−iΩt
∞∑

n=−∞
xn cosnφ . (3.6)

Following basically Ref. [12], Eq. (3.2) transforms into an eigenvalue equation,(
Ω

ωs
− n

)
xn = −K

∞∑
m=−∞

xm (Wnm + ξQnm) . (3.7)

Here, the current parameter is written as

K =
Nbe2c2W0

2π2ωβωsCE0
. (3.8)

The wake matrix elements are then given by

FIGURE 9. Left: With the transverse space-charge force added to the wake forces, all modes
except the 0 mode are shifted downward, thus requiring the 0 and −1 modes to couple at a much
higher current threshold. Right: When space charge reaches the critical value of ξ = 5, the
−1 mode is shifted away from the 0 mode by so much that they do not couple anymore.
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Wnm =
∫ π

0
dφ
∫ φ

0
dφ′w[z(φ′)− z(φ)] cos(nφ) cos(mφ′) , (3.9)

where the wake function is presented as W (z) = W0w(z) with W0 serving as a
normalizing constant. The space-charge parameter

ξ =
∆ωβ
2Kωs

(3.10)

is a current-dependent ratio of the incoherent tune shift

∆ωβ =
Sρ

2ωβ
(3.11)

to the current parameter K. The space-charge matrix elements are

Qnm = δnm − δn,−m (3.12)

in the assumed air-bag distribution.

Without wake forces, the eigenvalue equation leads to the mode behavior pre-
sented in the right plot of Fig. 8. For the simplest step-like wake function
w(z) = θ(z) and without space charge (ξ = 0), the mode coupling is shown in
the left plot of Fig. 8, where the threshold is K = 0.73. Now space charge is intro-
duced with the space-charge parameter ξ = 4. We do see in the left plot of Fig. 9
that, because the −1 mode is shifted downward by the space charge, the instability
threshold has been pushed up to K = 1.25 as compared with the left plot of Fig. 8.

Further increasing the space-charge parameter to ξ = 5, we see in the right plot
of Fig. 9 that modes 0 and −1 do not merge any more. What is not shown in the
plot is a much higher new threshold where the 0 mode couples with the 1 mode
instead. This new threshold is very much model dependent. In the present model,
it depends strongly on the number of modes included in the truncated matrix. For
truncation at modes |n| = 32, this new threshold is at least a factor of 30 higher
than when space charge is absent. A dependence of the calculated threshold Kth

on the mode truncation number |n| was found as Kth ∝ |n|1/2 for |n| ≤ 10 and even
weaker,

Kth ∝ |n|1/3 , (3.13)

for 10 ≤ |n| ≤ 32. The divergence is caused by the fact that the Fourier components
of the space charge in Eq. (3.12) do not roll off at high frequencies. Taking into
account the finite value of the ratio of transverse bunch size σ⊥ to longitudinal
bunch size σ‖, we estimate this roll off limit as |n| ' σ⊥/σ‖ ' 200 to 1000 for
typical hadron bunches. Extrapolation of the dependence Eq. (3.13) into this area
brings to a conclusion that the actual threshold can be 2 to 3 times higher than
the result reported for |n| = 32. So for this simplified wake-beam model, the space
charge is found to be able to increase the TMCI threshold by a factor of 50 to 100.

Unlike the longitudinal mode-coupling instability where the bunch may just
lengthen as the beam becomes unstable essentially without losing beam particles,
this transverse instability is devastating; as soon as the threshold is reached, the
bunch disappears. TMCI in electron machines are usually damped with a reactive
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feedback system; i.e., the kicker is located at an even multiple of 90◦ from the pickup
[13]. This implies the addition of a term Gx̄(φ) to the right-hand side of Eq. (3.2),
where G is the gain of the feedback system. Notice that the reactive feedback acts
on the center of the bunch and is in phase with the particle displacements; hence
the term reactive. It therefore modifies the betatron tune by introducing a tune
shift. Thus, only the 0 mode is affected but not the other modes. The instability
threshold can then be raised by properly choosing the strength and sign of the
feedback gain G so that the 0 mode has a positive shift. The space-charge tune
shift in a proton machine, as discussed above, constitutes a natural inverse reactive
feedback.

One of the authors (A. Burov) expresses his gratitude to Slava Danilov and Mike
Blaskiewicz for fruitful discussions.
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